Multiply two binomials: special cases

key notes:

Square of a binomial:

(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

Difference of squares:

(a+b)(a–b)=a2–b2

Learn with an example

🎯 Find the square.

Simplify your answer.

(3s+2)2

(3s+2)2 is the square of a binomial, just like (a+b)2. So, you can find (3s+2)2 with this formula:

(a+b)2=a2+2ab+b2

Replace a with 3s and b with 2, then simplify.

(3s+2)2

(3s)2+2(3s)(2)+22

9s2+12s+4

🎯 Find the square.

Simplify your answer.

(2f+2)2

(2f+2)2 is the square of a binomial, just like (a+b)2. So, you can find (2f+2)2 with this formula:

(a+b)2=a2+2ab+b2

Replace a with 2f and b with 2, then simplify.

(2f+2)2

(2f)2+2(2f)(2)+22

4f2+8f+4

🎯 Find the product.

Simplify your answer.

(4a–3)(4a+3)

(4a–3)(4a+3) can be written as (4a+3)(4a–3). Either way, it is the difference of squares, just like (a+b)(a–b). So, you can find (4a+3)(4a–3) with this formula:

(a+b)(a–b)=a2–b2

Replace a with 4a and b with 3, then simplify.

(4a+3)(4a–3)

(4a)232

16a2 – 9

let’s practice!