Power property of logarithms

key notes:

Product Property: logb M + logb N = logb MN, where b, M, and N are positive, and b≠1.

Quotient Property: logb M – logb N = logb M/N , where b, M, and N are positive, and b≠1.

Power Property: logb MN = N logb M, where b and M are positive, and b≠1.

common logarithm uses base 10. The common logarithm log10 x is usually written as logx, without the base.

Learn with an example

➡️ Expand the logarithm. Assume all expressions exist and are well-defined.

Write your answer as a sum or difference of common logarithms or multiples of common logarithms.

The inside of each logarithm must be a distinct constant or variable.

log x2

_______

Expand the logarithm. 

log x2

= 2 log x Power Property

You could also use the Product Property.

log x2

= log (x . x) Definition of exponent

= log x + log x Product Property

= 2 log x Combine like terms

➡️ Expand the logarithm. Assume all expressions exist and are well-defined.

Write your answer as a sum or difference of common logarithms or multiples of common logarithms.

The inside of each logarithm must be a distinct constant or variable.

log v9

_______

Expand the logarithm. 

log v9

= 9 log v Power Property

➡️ Expand the logarithm. Assume all expressions exist and are well-defined.

Write your answer as a sum or difference of common logarithms or multiples of common logarithms.

The inside of each logarithm must be a distinct constant or variable.

log r2

_______

Expand the logarithm. 

log r2

= log (r . r) Definition of exponent

= log r + log r Product Property

= 2 log r Combine like terms

let’s practice!