Circle measurements: mixed review

Arclength is the distance between two points along a section of a curve or circle.

A circle is shown. A central angle is shown inside of the circle. A curve along the minor arc created by the central angle is labeled arc length.

Here is a formula for arc length:

𝓁= m/360 . C

In the formula, π“ is the arc length, m is the degree measure of an arc (or the central angle that intercepts the arc), and C is the circumference of the circle.

πŸ”” Tip

You can also write this formula as a proportion where each ratio relates the arc to the full circle:

𝓁/C = m/360

The ratio π“/C compares the arc length to the circumference of the circle. The ratio m/360 compares the degree measure of the arc to the degree measure of a full circle.

Finding arc length

Let’s try it! The radius of the circle below is 8 feet. Find the length of a 120Β° arc.

A circle is shown. The circle has an arc, labeled 120 degrees, and a radius, labeled 8 feet.

To find the arc’s length, you’ll need to use the arc’s measure and the circle’s circumference. Find the circle’s circumference using the formula C=2β€‹πœ‹r, where r is the radius.

C=2β€‹πœ‹r

= 2 . β€‹πœ‹ . 8 Plug in r=8.

= 16β€‹πœ‹ Simplify.

The circumference is 16β€‹πœ‹ feet.

Now, find the length of the arc.

𝓁= m / 360 . C

= 120 / 360 . 16β€‹πœ‹ Plug in m=120 and C=16β€‹πœ‹.

= 16β€‹πœ‹ / 3 Simplify.

So, the length of the arc is 16β€‹πœ‹ / 3 feet

Finding arc measures

To find the measure of an arc, you can use the arc’s length and the circle’s circumference.

Let’s try it! The diameter of the circle below is 12 inches. Find the measure, in degrees, of an arc that is 2β€‹πœ‹ inches long.

A circle is shown. The circle has a central angle, and the minor arc created by the central angle is labeled 2 pi inches. The circle also has a diameter labeled 12 inches.

To find the arc’s measure in degrees, you’ll need to use the arc’s length and the circle’s circumference. Find the circle’s circumference using the formula C=β€‹πœ‹d, where d is diameter.

C=β€‹πœ‹d

= 12β€‹πœ‹ Plug in d=12.

The circumference is 12β€‹πœ‹ inches.

Now, find the measure of the arc.

𝓁= m / 360 . C

2β€‹πœ‹= m / 360 . 12β€‹πœ‹ Plug in 𝓁=2β€‹πœ‹ and C=12β€‹πœ‹

2β€‹πœ‹ . 360 / 12β€‹πœ‹ = m Multiply both sides by 360 / 12β€‹πœ‹

60= m Simplify

So, the measure of the arc is 60Β°.

Arc length and radians

You can also find arc length when the arc or the central angle is measured in radians. Here is a formula for arc length:

𝓁=rβ€‹πœƒ

In the formula, π“ is the arc length, r is the radius of the circle, and β€‹πœƒ is the radian measure of the arc (or the central angle that intercepts the arc).

πŸ”” Tip

When using this formula to solve problems, you may be asked about an arc that subtends a given angle. This means that the endpoints of the arc are the points where the angle intersects the circle.

For example, in the circle below, BC subtends βˆ BAC

Circle A is shown. Points B and C lie on the circle. Radii AB and AC create central angle A. The arc between points B and C is highlighted.

Finding arc length

Let’s try it! The radius of the circle below is 12 centimeters. Find the length of an arc that subtends an angle of β€‹πœ‹/2 radians.

A circle is shown. The circle has a central angle, labeled pi over 2, and a radius, labeled 12 centimeters.

You can use the central angle’s measure and the circle’s radius to find the arc’s length.

𝓁=rβ€‹πœƒ

=12 . πœ‹/2 Plug in r=12 and β€‹πœƒ= πœ‹/2

= 6β€‹πœ‹ Simplify.

So, the length of the arc is 6β€‹πœ‹ centimeters.

Finding arc measures

You can use an arc’s length and the circle’s radius to find an arc’s measure in radians.

Let’s try it! The radius of the circle below is 3 meters. Find the measure, in radians, of an arc that is 5β€‹πœ‹/2  meters long.

A circle is shown. The circle has a central angle and the minor arc created by the central angle is labeled 5 pi over 2 meters. The circle also has a radius labeled 3 meters.

Find the measure of the arc using the arc’s length and the circle’s radius.

𝓁=rβ€‹πœƒ

5β€‹πœ‹/2 = 3β€‹πœƒ Plug in π“= 5β€‹πœ‹/2 and r = 3

5β€‹πœ‹/6 = β€‹πœƒ Divide both sides by 3.

So, the measure of the arc is  5β€‹πœ‹/6 radians

πŸ”” Fun Fact

The formula π“=rβ€‹πœƒ comes from the definition of radians. The radian measure of a central angle in a circle is β€‹πœƒ=𝓁/r, where π“ is the length of the arc that the angle intercepts, and r is the radius of the circle. You can solve that equation for π“ to get the formula.

πœƒ=𝓁/r Definition of radian

rβ€‹πœƒ= 𝓁 Multiply both sides by r.

Learn with an example

Give the exact answer in simplest form.

________Β°

The arc’s measure can be found from the sector’s area and the circle’s area. You already know that the sector’s area is 8β€‹πœ‹square centimetres, so find the circle’s area.

To find the area, first find the radius.

d = 2r

16 = 2r Plug in d=16

8 = r Divide both sides by 2

The radius is 8 centimetres.

Next, find the area of the circle.

A = β€‹πœ‹r2
= β€‹πœ‹ . 82 Plug in r=8
= 64 β€‹πœ‹ Square

The area of the circle is 64β€‹πœ‹ square centimetres.

Finally, find the angle measure of the arc.

K = A . m/360

8β€‹πœ‹ = 64 πœ‹ m/ 360 Plug in K=8β€‹πœ‹ and A=64πœ‹

8β€‹πœ‹ . 360 / 64 πœ‹ =m Multiply both sides by 360 / 64 πœ‹

45 = m Multiply and simplify

The angle measure of the arc is 45Β°.

Give the exact answer in simplest form.

_______ square metres

Find the area.
A = β€‹πœ‹r2
= β€‹πœ‹.72 Plug in r=7
= 49β€‹πœ‹ Square
The area is 49β€‹πœ‹ square metres.

Give the exact answer in simplest form.

_______ square metres

First, find the radius.

C = 2πœ‹r

4πœ‹ = 2πœ‹r Plug in C=4β€‹πœ‹

2 = r Divide both sides by 2β€‹πœ‹

The radius is 2 metres.

Now, find the area.

A = β€‹πœ‹r2
= β€‹πœ‹.22 Plug in r=2
= 4 β€‹πœ‹ Square

The area is 4β€‹πœ‹ square metres.

Let’s practice!