Area of sectors

🔵 What is a Sector?

A sector is a part of a circle that looks like a slice of pizza 🍕 or a piece of pie 🥧.


🔶 Formula for Area of a Sector

If a circle has radius r and the central angle is θ (in degrees):

👉 Area of a sector = (θ / 360°) × πr²

🟣 This formula tells us what fraction of the circle the sector represents.


🟩 When Angle is in Radians

If angle is θ radians:

👉 Area = (1/2) × r² × θ

📏 Radians are often used in higher classes, but good to know!


🟠 Understanding the Formula

  • Full circle = 360°
  • Sector = part of the circle
    So multiply fraction of circle × area of full circle.

💛 Important Terms

  • Radius (r) ➝ distance from center to edge of circle
  • Central Angle (θ) ➝ angle that opens the sector
  • π (pi) ➝ approximately 3.14

🟣 Area Depends On:

✔ Size of angle (θ) ➝ Bigger angle = bigger sector
✔ Size of radius (r) ➝ Larger circle = larger sector


💙 Real-Life Examples of Sectors

🍕 Pizza slices
🕗 Clock face sections
🎡 Ferris wheel sections
⚙ Machine gears


🧠 Sample Quick Example

Find the area of a sector with

  • r = 7 cm
  • θ = 60°

👉 Area = (60/360) × π × 7²
👉 Area = (1/6) × π × 49
👉 Area = (49π / 6) cm² 🎉


🌈 Tips for Solving Problems

⭐ Convert angle to degrees or radians correctly
⭐ Always write formula first
⭐ Square the radius carefully
⭐ Simplify fractions before multiplying for ease

Learn with an example

Give the exact answer in simplest form.

___________ square centimetres

The sector’s area depends on the arc’s measure and the circle’s area. You already know that the arc’s measure is 180°, so find the circle’s area.

First, find the area of the circle.

A = 𝜋 r2

= 𝜋 102 Plug in r=10

= 100 𝜋 Square

The area of the circle is 100​𝜋 square centimetres.

Now, find the area of the sector.

K = A . m/360

= 100 𝜋 180 / 360 Plug in A=100​𝜋 and m=180

= 50 𝜋 Multiply and simplify

The area of the sector is  50​𝜋 square centimetres.

Give the exact answer in simplest form.

_________ square kilometres

The sector’s area depends on the arc’s measure and the circle’s area. You already know that the arc’s measure is 45°, so find the circle’s area.

First, find the area of the circle.

A = 𝜋 r2

= 𝜋 82 Plug in r=8

= 64 𝜋 Square

The area of the circle is 64​𝜋 square kilometres.

Now, find the area of the sector.

K = A . m/360

= 64 𝜋 45 / 360 Plug in A=64​𝜋 and m=45

= 8 𝜋 Multiply and simplify

The area of the sector is  8​𝜋 square kilometres.

Give the exact answer in simplest form.

___________ square centimetres

The sector’s area depends on the arc’s measure and the circle’s area. You already know that the arc’s measure is 90°, so find the circle’s area.

First, find the area of the circle.

A = 𝜋 r2

= 𝜋 62 Plug in r=6

= 36 𝜋 Square

The area of the circle is 36​𝜋 square centimetres.

Now, find the area of the sector.

K = A . m/360

= 36 𝜋 90 / 360 Plug in A=36​ 𝜋 and m=90

= 9 𝜋 Multiply and simplify

The area of the sector is  9​𝜋 square centimetres.

Let’s practice!